skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ross, Donald S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Hydrologic behavior and soil properties across forested landscapes with complex topography exhibit high variability. The interaction of groundwater with spatially distinct soils produces and transports solutes across catchments, however, the spatiotemporal relationships between groundwater dynamics and soil solute fluxes are difficult to directly evaluate. While whole-catchment export of solutes by shallow subsurface flow represents an integration of soil environments and conditions but many studies compartmentalize soil solute fluxes as hillslope vs. riparian, deep vs. shallow, or as individual soil horizon contributions. This potentially obscures and underestimates the hillslope variation and magnitude of solute fluxes and soil development across the landscape. This study determined the spatial variation and of shallow soil base cation fluxes associated with weathering reactions (Ca, Mg, and Na), soil elemental depletion, and soil saturation dynamics in upland soils within a small, forested watershed at the Hubbard Brook Experimental Forest, NH. Base cation fluxes were calculated using a combination of ion-exchange resins placed in shallow groundwater wells (0.3 – 1 m depth) located across hillslope transects (ridges to lower backslopes) and measurements of groundwater levels. Groundwater levels were also used to create metrics of annual soil saturation. Base cation fluxes were positively correlated with soil saturation frequency and were greatest in soil profiles where primary minerals were most depleted of base cations (i.e., highly weathered). Spatial differences in soil saturation across the catchment were strongly related to topographic properties of the upslope drainage area and are interpreted to result from spatial variations in transient groundwater dynamics. Results from this work suggest that the structure of a catchment defines the spatial architecture of base cation fluxes, likely reflecting the mediation of subsurface stormflow dynamics on soil development. Furthermore, this work highlights the importance of further compartmentalizing solute fluxes along hillslopes, where certain areas may disproportionately contribute solutes to the whole catchment. Refining catchment controls on base cation generation and transport could be an important tool for opening the black box of catchment elemental cycling. 
    more » « less
  2. Mineral weathering is an important soil-forming process driven by the interplay of water, organisms, solution chemistry, and mineralogy. The influence of hillslope-scale patterns of water flux on mineral weathering in soils is still not well understood, particularly in humid postglacial soils, which commonly harbor abundant weath- erable primary minerals. Previous work in these settings showed the importance of lateral hydrologic patterns to hillslope-scale pedogenesis. In this study, we hypothesized that there is a corresponding relationship between hydrologically driven pedogenesis and chemical weathering in podzols in the White Mountains of New Hamp- shire, USA. We tested this hypothesis by quantifying the depletion of plagioclase in the fine fraction (≤2 mm) of closely spaced, similar-age podzols along a gradient in topography and depth to bedrock that controls lateral water flow. Along this gradient, laterally developed podzols formed through frequent, episodic flushing by up- slope groundwater, and vertically developed podzols formed through characteristic vertical infiltration. We estimated the depletion of plagioclase-bound elements within the upper mineral horizons of podzols using mass transfer coefficients (τ) and quantified plagioclase losses directly through electron microscopy and microprobe analysis. Elemental depletion was significantly more pronounced in the upslope lateral eluvial (E horizon- dominant) podzols relative to lateral illuvial (B horizon-dominant) and vertical (containing both E and B hori- zons) podzols downslope, with median Na losses of ~74 %, ~56 %, and ~40 %, respectively. When comparing genetic E horizons, Na and Al were significantly more depleted in laterally developed podzols relative to vertically developed podzols. Microprobe analysis revealed that ~74 % of the plagioclase was weathered from the mineral pool of lateral eluvial podzols, compared to ~39 % and ~23 % for lateral illuvial podzols and vertically developed podzols, respectively. Despite this intense weathering, plagioclase remains the second most abundant mineral in soil thin sections. These findings confirm that the concept of soil development as occurring vertically does not accurately characterize soils in topographically complex regions. Our work improves the current understanding of pedogenesis by identifying distinct, short-scale gradients in mineral weathering shaped by local patterns of hydrology and topography. 
    more » « less
  3. null (Ed.)
    Phosphorus (P) loss from cropland to ground and surface waters is a global concern. In cold climates (CCs), freeze–thaw cycles, snowmelt runoff events, and seasonally wet soils increase P loss potential while limiting P removal effectiveness of riparian buffer zones (RBZs) and other practices. While RBZs can help reduce particulate P transfer to streams, attenuation of dissolved P forms is more challenging. Moreover, P transport studies often focus on either cropland or RBZs exclusively rather than spanning the natural cropland–RBZ–stream gradient, defined here as the cropland–RBZ–stream continuum. Watershed P transport models and agronomic P site indices are commonly used to identify critical source areas; however, RBZ effects on P transport are usually not included. In addition, the coarse resolution of watershed P models may not capture finer-scale soil factors affecting P mobilization. It is clear that site microtopography and hydrology are closely linked and important drivers of P release and transport in overland flow. Combining light detection and ranging (LiDAR) based digital elevation models with P site indices and process-based models show promise for mapping and modeling P transport risk in cropland-RBZ areas; however, a better mechanistic understanding of processes controlling mobile P species across regions is needed. Broader predictive approaches integrating soil hydro-biogeochemical processes with real-time hydroclimatic data and risk assessment tools also hold promise for improving P transport risk assessment in CCs. 
    more » « less